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n Determine continuity at a point and continuity on 
an open interval. 

n Determine one-sided limits and continuity on a 
closed interval.

n Use properties of continuity.

n Understand and use the Intermediate Value 
Theorem.

Objectives
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Continuity at a Point and on an 
Open Interval
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In mathematics, the term continuous has much the same 
meaning as it has in everyday usage.

Informally, to say that a function f is continuous at x = c 
means that there is no interruption in the graph of f at c.

That is, its graph is unbroken at c, and there are no holes, 
jumps, or gaps.

Continuity at a Point and on an Open Interval
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Figure 1.26 identifies three values of x at which the graph of 
f is not continuous. At all other points in the interval (a, b), 
the graph of f is uninterrupted and continuous.

Figure 1.26

Continuity at a Point and on an Open Interval
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In Figure 1.26, it appears that continuity at x = c can be 
destroyed by any one of the following conditions.

1. The function is not defined at x = c.
2. The limit of f(x) does not exist at x = c.
3. The limit of f(x) exists at x = c, but it is not equal to f(c).

If none of the three conditions is true, the function f is called 
continuous at c, as indicated in the following important 
definition.

Continuity at a Point and on an Open Interval
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Continuity at a Point and on an Open Interval
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Consider an open interval I that contains a real number c.

If a function f is defined on I (except possibly at c), and f is 
not continuous at c, then f is said to have a discontinuity 
at c.

Discontinuities fall into two categories: removable and 
nonremovable. 

A discontinuity at c is called removable when f can be made 
continuous by appropriately defining (or redefining f(c)). 

Continuity at a Point and on an Open Interval
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For instance, the functions shown in Figures 1.27(a) and (c) 
have removable discontinuities at c and the function shown 
in Figure 1.27(b) has a nonremovable discontinuity at c.

Figure 1.27

Continuity at a Point and on an Open Interval
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Example 1 – Continuity of a Function

Discuss the continuity of each function.
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The domain of f is all nonzero real numbers.

From Theorem 1.3, you can conclude that f is continuous at every 
x-value in its domain.

Example 1(a) – Solution
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At x = 0, f has a nonremovable discontinuity, as shown in 
Figure 1.28(a).

In other words, there is no way to define f(0) so as to make the 
function continuous at x = 0.

Example 1(a) – Solution

Figure 1.28(a)

cont’d
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The domain of g is all real numbers except x = 1.

From Theorem 1.3, you can conclude that g is continuous 
at every x-value in its domain.

At x = 1, the function has a removable 
discontinuity, as shown in 
Figure 1.28(b).

By defining g(1) as 2, the 
“redefined” function is 
continuous for all real numbers.

Figure 1.28(b)

cont’dExample 1(b) – Solution



15Figure 1.28(c)

Example 1(c) – Solution

The domain of h is all real numbers. The function h is 
continuous on             and          , and because                  , 
h is continuous on the entire real number line, as shown in 
Figure 1.28(c).

cont’d
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The domain of y is all real numbers.

Example 1(d) – Solution cont’d
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From Theorem 1.6, you can conclude that the function is 
continuous on its entire domain,          , as shown in
Figure 1.28(d).

Figure 1.28(d)

Example 1(d) – Solution cont’d
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One-Sided Limits and Continuity on 
a Closed Interval
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To understand continuity on a closed interval, you first 
need to look at a different type of limit called a one-sided 
limit. 

For instance, the limit from the right (or right-hand limit) 
means that x approaches c from values greater than c
[see Figure 1.29(a)]. 
This limit is denoted as

One-Sided Limits and Continuity on a Closed Interval

Figure 1.29(a)
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Similarly, the limit from the left (or left-hand limit) means 
that x approaches c from values less than c
[see Figure 1.29(b)]. 

This limit is denoted as

Figure 1.29(b)

One-Sided Limits and Continuity on a Closed Interval
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One-sided limits are useful in taking limits of functions 
involving radicals.

For instance, if n is an even integer, then

One-Sided Limits and Continuity on a Closed Interval
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Example 2 – A One-Sided Limit

Find the limit of f(x) =              as x approaches –2 from the 
right.

Solution:
As shown in Figure 1.30, the
limit as x approaches –2 from
the right is

Figure 1.30
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One-sided limits can be used to investigate the behavior of 
step functions. 
One common type of step function is the greatest integer 
function     , defined as

For instance,               and

One-Sided Limits and Continuity on a Closed Interval
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One-Sided Limits and Continuity on a Closed Interval

When the limit from the left is not equal to the limit from the
right, the (two-sided) limit does not exist. The next theorem
makes this more explicit.
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One-Sided Limits and Continuity on a Closed Interval

The concept of a one-sided limit allows you to extend the 
definition of continuity to closed intervals.

Basically, a function is continuous on a closed interval 
when it is continuous in the interior of the interval and 
exhibits one-sided continuity at the endpoints. This is 
stated formally in the next definition.
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Figure 1.32

One-Sided Limits and Continuity on a Closed Interval
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Example 4 – Continuity on a Closed Interval

Discuss the continuity of f(x) =

Solution:
The domain of f is the closed interval [–1, 1]. 

At all points in the open interval (–1, 1), the continuity of f
follows from Theorems 1.4 and 1.5. 
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Example 4 – Solution cont’d
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Example 4 – Solution

Figure 1.33

cont’d

Moreover, because

and

you can conclude that f is 
continuous on the closed interval 
[–1, 1], as shown in Figure 1.33.
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Properties of Continuity
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Properties of Continuity
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The list below summarizes the functions you have studied 
so far that are continuous at every point in their domains.

By combining Theorem 1.11 with this list, you can 
conclude that a wide variety of elementary functions are 
continuous at every point in their domains.

Properties of Continuity
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Example 6 – Applying Properties of Continuity

By Theorem 1.11, it follows that each of the functions below 
is continuous at every point in its domain.
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The next theorem, which is a consequence of Theorem 1.5, 
allows you to determine the continuity of composite functions 
such as

Properties of Continuity
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Example 7 – Testing for Continuity

Describe the interval(s) on which each function is continuous.
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Example 7(a) – Solution

The tangent function f(x) = tan x is undefined at

At all other points f is continuous.
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So, f(x) = tan x is continuous on the open intervals

as shown in Figure 1.34(a).

Figure 1.34

cont’dExample 7(a) – Solution
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Because y = 1/x is continuous except at x = 0 and the sine 
function is continuous for all real values of x, it follows that 
y = sin (1/x) is continuous at all real values except x = 0.

At x = 0, the limit of g(x) does 
not exist.

So, g is continuous on the intervals 
as shown in 

Figure 1.34(b).

Figure 1.34

Example 7(b) – Solution cont’d
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This function is similar to the function in part (b) except that 
the oscillations are damped by the factor x.

Using the Squeeze Theorem, you obtain

and you can conclude that

So, h is continuous on the entire 
real number line, as shown in
Figure 1.34(c). Figure 1.34

Example 7(c) – Solution cont’d
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The Intermediate Value Theorem
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The Intermediate Value Theorem
Theorem 1.13 is an important theorem concerning the 
behavior of functions that are continuous on a closed 
interval.
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The Intermediate Value Theorem tells you that at least one 
number c exists, but it does not provide a method for finding 
c. Such theorems are called existence theorems.

A proof of this theorem is based on a property of real 
numbers called completeness.

The Intermediate Value Theorem states that for a continuous 
function f, if x takes on all values between a and b, then f(x)
must take on all values between f(a) and f(b).

The Intermediate Value Theorem
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As an example of the application of the Intermediate Value 
Theorem, consider a person’s height. A girl is 5 feet tall on 
her thirteenth birthday and 5 feet 2 inches tall on her 
fourteenth birthday. 

Then, for any height h between 5 feet and 5 feet 2 inches, 
there must have been a time t when her height was exactly h.

This seems reasonable because human growth is continuous 
and a person’s height does not abruptly change from one 
value to another.

The Intermediate Value Theorem



44

The Intermediate Value Theorem guarantees the existence 
of at least one number c in the closed interval [a, b] . 

There may, of course, be more than 
one number c such that f(c) = k
as shown in Figure 1.35. 

Figure 1.35

The Intermediate Value Theorem
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A function that is not continuous does not necessarily 
exhibit the intermediate value property.

For example, the graph of the 
function shown in Figure 1.36 jumps 
over the horizontal line y = k and for
this function there is no value of
c in [a, b] such that f(c) = k.

Figure 1.36

The Intermediate Value Theorem
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The Intermediate Value Theorem often can be used to 
locate the zeros of a function that is continuous on a closed 
interval. 

Specifically, if f is continuous on [a, b] and f(a) and f(b) 
differ in sign, then the Intermediate Value Theorem 
guarantees the existence of at least one zero of f in the 
closed interval [a, b] .

The Intermediate Value Theorem
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Example 8 – An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the 
polynomial function                             has a zero in the 
interval [0, 1].

Solution:
Note that f is continuous on the closed interval [0, 1].

Because

it follows that f(0) < 0 and f(1) > 0.
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Example 8 – Solution

You can therefore apply the Intermediate Value Theorem to 
conclude that there must be some c in [0, 1] such that 

as shown in Figure 1.37.

Figure 1.37

cont’d
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The bisection method for approximating the real zeros of 
a continuous function is similar to the method used in
Example 8.

If you know that a zero exists in the closed interval [a, b], 
then the zero must lie in the interval [a, (a + b)/2] or
[(a + b)/2, b]. 

From the sign of f([a + b]/2), you can determine which 
interval contains the zero.

By repeatedly bisecting the interval, you can “close in” on 
the zero of the function.

The Intermediate Value Theorem


