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Objectives

B Determine continuity at a point and continuity on
an open interval.

B Determine one-sided limits and continuity on a
closed interval.

B Use properties of continuity.

B Understand and use the Intermediate Value
Theorem.



Continuity at a Point and on an
Open Interval



Continuity at a Point and on an Open Interval

In mathematics, the term continuous has much the same
meaning as it has in everyday usage.

Informally, to say that a function fis continuous at x = ¢
means that there is no interruption in the graph of f at c.

That is, its graph is unbroken at ¢, and there are no holes,
jumps, or gaps.



Continuity at a Point and on an Open Interval

Figure 1.26 identifies three values of x at which the graph of
fis not continuous. At all other points in the interval (a, b),
the graph of fis uninterrupted and continuous.
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Three conditions exist for which the graph of fis not continuous at x = c.

Figure 1.26



Continuity at a Point and on an Open Interval

In Figure 1.206, it appears that continuity at x = ¢ can be
destroyed by any one of the following conditions.

1. The function is not defined at x = c.
2. The limit of f(x) does not exist at x = c.
3. The limit of f(x) exists at x = ¢, but it is not equal to f(c).

If none of the three conditions is true, the function fis called
continuous at ¢, as indicated in the following important

definition.



Continuity at a Point and on an Open Interval

Definition of Continuity

Continuity at a Point
A function fis continuous at ¢ when these three conditions are met.

1. f(c) is defined.
2. lim f(x) exists.

X—C

3. lim f(x) = f(c)

X—C

Continuity on an Open Interval

A function is continuous on an open interval (a, b) when the function is
continuous at each point in the interval. A function that is continuous on the
entire real number line (— oo, oo) is everywhere continuous.




Continuity at a Point and on an Open Interval

Consider an open interval / that contains a real number c.

If a function fis defined on / (except possibly at ¢), and fis
not continuous at ¢, then fis said to have a discontinuity
at c.

Discontinuities fall into two categories: removable and
nonremovable.

A discontinuity at c is called removable when f can be made
continuous by appropriately defining (or redefining f(c)).



Continuity at a Point and on an Open Interval

For instance, the functions shown in Figures 1.27(a) and (c)
have removable discontinuities at ¢ and the function shown
in Figure 1.27(b) has a nonremovable discontinuity at c.
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(a) Removable discontinuity
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(b) Nonremovable discontinuity
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(c) Removable discontinuity

10



Example 1 — Continuity of a Function

Discuss the continuity of each function.

1

a-f(X)=;

2
b-g(JC)ZX_1

x+1, x=<0
¢c. hix) =

x2+1, x>0
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Example 1(a) — Solution

The domain of £is all nonzero real numbers.

From Theorem 1.3, you can conclude that 71s continuous at every
x-value 1n its domain.

THEOREM 1.2 Limits of Polynomial and Rational Functions

If p i1s a polynomial function and ¢ is a real number, then
lim p(x) = p(c).

If r is a rational function given by r(x) = p(x)/q(x) and ¢ is a real number such
that g(c) # O, then

ll_}ﬁg r(x) = r(c) = %
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Example 1(a) — Solution

At x =0, fhas a nonremovable discontinuity, as shown in
Figure 1.28(a).

N

(a) Nonremovable discontinuity at x = 0

Figure 1.28(a)

In other words, there 1s no way to define f(0) so as to make the

function continuous at x = 0.
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Example 1(b) — Solution

The domain of g is all real numbers except x = 1.

From Theorem 1.3, you can conclude that g is continuous
at every x-value in its domain.

At x =1, the function has a removable
discontinuity, as shown in
Figure 1.28(b).

By defining g(1) as 2, the / ] 4
“redefined” function is

continuous for all real numbers.

(b) Removable discontinuity at x = 1

Figure 1.28(b)
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Example 1(c) — Solution

The domain of h is all real numbers. The function h is
continuous on (—oe.0) and (0, o) , and because lim h(x) = 1,

h i1s continuous on the entire real number line, as shown N
Figure 1.28(c).

AN
‘x+1, x<0

I hix)=4 ",
/ X +1L,x>0
| | —

(¢) Continuous on entire real number line

Figure 1.28(c) 15



Example 1(d) — Solution

The domain of y is all real numbers.

THEOREM 1.6 Limits of Trigonometric Functions

1. im sinx = sin ¢ 2. limcos x = cos ¢ 3. imtanx = tan ¢
X—C X—C X—C

4. lim cotx = cot¢ 5. lim sec x = sec ¢ 6. lim cscx = cscc
X—C X—C X—C

Let ¢ be a real number in the domain of the given trigonometric function.
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Example 1(d) — Solution

From Theorem 1.6, you can conclude that the function is
continuous on its entire domain, (-, «), as shown in

Figure 1.28(d).

y=sinx

(d) Continuous on entire real number line

Figure 1.28(d)
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One-Sided Limits and Continuity on
a Closed Interval
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One-Sided Limits and Continuity on a Closed Interval

To understand continuity on a closed interval, you first

need to look at a different type of limit called a one-sided
limit.

For instance, the limit from the right (or right-hand limit)
means that x approaches ¢ from values greater than ¢
[see Figure 1.29(a)].

This limit is denoted as

lim flx) = L. Limit from the right L

X—C |

c<X

(a) Limit as x approaches ¢ from the right.

Figure 1.29(a) 19



One-Sided Limits and Continuity on a Closed Interval

Similarly, the limit from the left (or left-nand limit) means
that x approaches c from values less than ¢

[see Figure 1.29(b)].

This limit is denoted as

lim f(x) = L. Limit from the left

X—c
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(b) Limit as x approaches ¢ from the left.

Figure 1.29(b)
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One-Sided Limits and Continuity on a Closed Interval

One-sided limits are useful in taking limits of functions
iInvolving radicals.

For instance, if n is an even integer, then

lim 2/x = 0.

x—0"
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Example 2 — A One-Sided Limit

Find the limit of f(x) =4 — x? as x approaches -2 from the
right.

Solution:

As shown in Figure 1.30, the 3T =)

limit as x approaches -2 from V

the right is /\
‘._l,i'_“w J4 — x> =0. s 4

The limit of f(x) as x approaches —2
from the right is 0.

Figure 1.30
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One-Sided Limits and Continuity on a Closed Interval

One-sided limits can be used to investigate the behavior of
step functions.

One common type of step function is the greatest integer
function [.], defined as

[x] = greatest integer n such thatn < x. Greatest integer function

For instance, [2.5] = 2 and [-2.5] = —3.

23



One-Sided Limits and Continuity on a Closed Interval

When the limit from the left is not equal to the limit from the
right, the (two-sided) limit does not exist. The next theorem
makes this more explicit.

THEOREM 1.10 The Existence of a Limit

Let f be a function, and let ¢ and L be real numbers. The limit of f(x) as x
approaches c is L if and only if

lim f(x) =L and lim f(x) = L.
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One-Sided Limits and Continuity on a Closed Interval

The concept of a one-sided limit allows you to extend the
definition of continuity to closed intervals.

Basically, a function is continuous on a closed interval
when it is continuous in the interior of the interval and

exhibits one-sided continuity at the endpoints. This is

stated formally in the next definition.

25



One-Sided Limits and Continuity on a Closed Interval

Definition of Continuity on a Closed Interval

A function f is continuous on the closed interval [a, b] when f is continuous
on the open interval (a, b) and

lim f(x) = f(@)
and
lim £(x) = f(b)

The function f is continuous from the right at ¢ and continuous from the
left at b (see Figure 1.32).

r
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a b

Continuous function on a closed interval 26

Figure 1.32



Example 4 — Continuity on a Closed Interval

Discuss the continuity of fix) = /1 — x2.

Solution:
The domain of fis the closed interval [-1, 1].

At all points in the open interval (-1, 1), the continuity of f

fo

lows from Theorems 1.4 and 1.5.

THEOREM 1.4 The Limit of a Function Involving a Radical

Let n be a positive integer. The limit below is valid for all ¢ when n is odd,
and 1s valid for ¢ > 0 when n 1s even.

lim2/x = 2/c

X—C
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Example 4 — Solution

THEOREM 1.5 The Limit of a Composite Function
If f and g are functions such that lim g(x) = L and lirri f(x) = f(L), then

X—C

lim (g()) = f( limg(x) ) = Q).

28



Example 4 — Solution _—

Moreover, because

Iim V1 —x2=0=f(—1)

xr——1"

and
lim V1 —x*=0=f(1)

x—1

you can conclude that fis
continuous on the closed interval
[-1, 1], as shown in Figure 1.33.

Continuous from the right

Continuous from the left

A

I

ahy

-1 1

fis continuous on [—1, 1].

Figure 1.33
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Properties of Continuity
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Properties of Continuity

THEOREM 1.11 Properties of Continuity

If b is a real number and f and g are continuous at x = ¢, then the functions
listed below are also continuous at c.

1. Scalar multiple: bf 2. Sum or difference: f=* g

3. Product: fg 4. Quotient: g, 2(c) #0

31



Properties of Continuity

The list below summarizes the functions you have studied
so far that are continuous at every point in their domains.

1. Polynomial: px) =ax"+a, x" '+ - -+ax+ aq,
. \ _ p)
2. Rational: r(x) = —=, x) #0
( ) q(x)
3. Radical: flx) = n/x

4. Trigonometric: sin x, cOs X, tan x, cot x, sec x, CSC X

By combining Theorem 1.11 with this list, you can
conclude that a wide variety of elementary functions are
continuous at every point in their domains.

32



Example 6 — Applying Properties of Continuity

By Theorem 1.11, it follows that each of the functions below
IS continuous at every point in its domain.

x2 + 1
COS X

f(x) =x +sinx, f(x) =3tanx, f(x)=

33



Properties of Continuity

The next theorem, which is a consequence of Theorem 1.5,
allows you to determine the continuity of composite functions
such as

fx) =sin3x, f(x) = Vx> + 1, f(x) =tan %

THEOREM 1.12 Continuity of a Composite Function

If g is continuous at ¢ and f is continuous at g(c), then the
composite function given by (f - 2)(x) = f(g(x)) is continuous at c.
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Example 7 — Testing for Continuity

Describe the interval(s) on which each function is continuous.

a. f(x) = tanx

.
sin—, x # 0
b. g(x) = [ X
0, x=20
X sinl x#0
c. h(x) = X’
0, x=20
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Example 7(a) — Solution

The tangent function f(x) = tan x is undefined at

(0 . .
X = 7 + N, An1san integer.

At all other points fis continuous.
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Example 7(a) — Solution

S0, f(x) = tan x is continuous on the open intervals

as shown in Figure 1.34(a).

f(x)=tanx

(a) fis continuous on each open interval in
its domain.

Figure 1.34
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Example 7(b) — Solution

Because y = 1/x is continuous except at x = 0 and the sine
function is continuous for all real values of x, it follows that
y =sin (1/x) is continuous at all real values except x = 0.

At x =0, the limit of g(x) does
not exist.

S0, g is continuous on the intervals
(— o0, 0) and (0, c0). @S shown Iin
Figure 1.34(b).

(b) g is continuous on (—oo, 0) and (0, co).

38
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Example 7(c) — Solution

This function is similar to the function in part (b) except that
the oscillations are damped by the factor x.

Using the Squeeze Theorem, you obtain

— x| = xsin% <|x[l. x#0

and you can conclude that

lim A(x) = 0.

x—0 L
. . . 7 A h(x) = {.\' sin % x#0
So, h is continuous on the entire y=—Ix] 0,  x=0
real number Ilne, aS ShOWﬂ |n (c) h is continuous on the entire real number line.

Figure 1.34(c). Figure 1.34 39



The Intermediate Value Theorem
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The Intermediate Value Theorem

Theorem 1.13 is an important theorem concerning the
behavior of functions that are continuous on a closed
Interval.

THEOREM 1.13 Intermediate Value Theorem

If fis continuous on the closed interval [a, b]. f(a) # f(b). and k is any number
between f(a) and f(b). then there is at least one number ¢ in [a. b] such that

flc) = k.

41



The Intermediate Value Theorem

The Intermediate Value Theorem tells you that at least one
number c exists, but it does not provide a method for finding
c. Such theorems are called existence theorems.

A proof of this theorem is based on a property of real
numbers called completeness.

The Intermediate Value Theorem states that for a continuous
function 7, if x takes on all values between a and b, then f(x)
must take on all values between f(a) and f(b).

42



The Intermediate Value Theorem

As an example of the application of the Intermediate Value
Theorem, consider a person’s height. A girl is 5 feet tall on
her thirteenth birthday and 5 feet 2 inches tall on her
fourteenth birthday.

Then, for any height h between 5 feet and 5 feet 2 inches,
there must have been a time t when her height was exactly h.

This seems reasonable because human growth is continuous
and a person’s height does not abruptly change from one

value to another.
43



The Intermediate Value Theorem

The Intermediate Value Theorem guarantees the existence
of at least one number c in the closed interval [a, b] .

There may, of course, be more than
one number ¢ such that f(c) = k
as shown in Figure 1.35.

f is continuous on [a, b].
[There exist three ¢’s such that f(¢) = k.]

Figure 1.35
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The Intermediate Value Theorem

A function that is not continuous does not necessarily
exhibit the intermediate value property.

A

For example, the graph of the P
function shown in Figure 1.36 jumps \

over the horizontal line y = k and for

this function there is no value of PR ~
c in [a, b] such that f(c) = k.

fis not continuous on [a, b].
[There are no ¢’s such that f(c) = k.]

Figure 1.36
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The Intermediate Value Theorem

The Intermediate Value Theorem often can be used to
locate the zeros of a function that is continuous on a closed
interval.

Specifically, if fis continuous on [a, b] and f(a) and f(b)
differ in sign, then the Intermediate Value Theorem
guarantees the existence of at least one zero of fin the
closed interval [a, b] .

46



Example 8 — An Application of the Intermediate Value Theorem

Use the Intermediate Value Theorem to show that the
polynomial function f(x) = x*> + 2x — 1 has a zero in the
interval [0, 1].

Solution:
Note that fis continuous on the closed interval [0, 1].

Because

f0)=03420)—1=—1 and f(I)=13+2(1)—1=2

it follows that (0) <0 and f(1) > 0.

47



Example 8 — Solution

You can therefore apply the Intermediate Value Theorem to
conclude that there must be some c in [0, 1] such that

flc) =0 f has a zero in the closed interval [0, 1].
y U’(.\') =x+2x— ]J
— 4
as shown in Figure 1.37. 1.2

|
0

“/(o,—n

fis continuous on [0, 1] with f(0) < 0 and f(1) > 0.
Figure 1.37

> X
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The Intermediate Value Theorem

The bisection method for approximating the real zeros of
a continuous function is similar to the method used in
Example 8.

If you know that a zero exists in the closed interval [a, b],
then the zero must lie in the interval [a, (a + b)/2] or
[(a + b)/2, b].

From the sign of f([a + b]/2), you can determine which
Interval contains the zero.

By repeatedly bisecting the interval, you can “close in” on
the zero of the function.
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